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Abstract

Background—Accurate knowledge of the human atrial fibrous structure is paramount in 

understanding the mechanisms of atrial electrical function in health and disease. Thus far such 

knowledge has been acquired from destructive sectioning, and there is a paucity of data regarding 

atrial fiber architecture variability in the human population.

Methods and Results—In this study, we have developed a customized 3D diffusion tensor 

magnetic resonance imaging (DTMRI) sequence on a clinical scanner that makes it possible to 

image an entire intact human heart specimen ex vivo at sub-millimeter resolution. The data from 

eight human atrial specimens obtained with this technique present complete maps of the fibrous 

organization of the human atria. The findings demonstrate that the main features of atrial anatomy 

are mostly preserved across subjects, although the exact location and orientation of atrial bundles 

vary. Using the full tractography data, we were able to cluster, visualize, and characterize the 

distinct major bundles in the human atria. Further, quantitative characterization of the fiber angles 

across the atrial wall revealed that the transmural fiber angle distribution is heterogeneous 

throughout different regions of the atria.

Conclusions—The application of sub-millimeter DTMRI provides an unprecedented level of 

information regarding both human atrial structure as well as its inter-subject variability. The high 

resolution and fidelity of this data could enhance our understanding of structural contributions to 

atrial rhythm and pump disorders, and lead to improvements in their targeted treatment.
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Introduction

The exact relation between atrial structural pathways and electrical function/dysfunction in 

normal and diseased human atria has not been fully charactrized1. Atrial muscular 

architecture has a direct effect on atrial electrical activity by creating a preferential direction 

for excitation wave propagation2 and has been shown to promote rhythm disturbances under 

a variety of conditions 3–8. Therefore, accurate knowledge of the human atrial fibrous 

structure is important in understanding human atrial arrhythmia mechanisms; such 

knowledge could contribute significantly towards the improvement of strategies for treating 

atrial rhythm disorders9.

Existing information regarding atrial fiber orientation has been acquired from photography 

and tracings of visually observed tracts after sectioning the atria10–13. In addition to being 

destructive to the tissue and thus possibly introducing measurement biases, such 

methodologies involve the cumbersome task of reconstructing the 3D atrial structure from 

piece-wise data14; this task is particularly difficult for the large human atria. Furthermore, 

such acquisition methods render the systematic inter-subject comparison nearly impossible. 

Consequently, in contrast to the ventricles, there is a paucity of data regarding atrial fiber 

architecture variability in the human population. The need for such data is underscored by 

the fact that atrial anatomy varies greatly in the human population, as documented by in-vivo 
imaging15,16

Diffusion Tensor Magnetic Resonance Imaging (DTMRI) is a non-invasive technique that 

uses water diffusion as a probe to image fiber orientation in tissue17,18. DTMRI has been 

widely utilized to study fiber architecture in the brain and other organs19,20. Importantly, it 

has been successfully applied to acquire ventricular fiber orientations in normal and diseased 

hearts, both in animal species and in the human21–25. Ventricular fiber maps derived from 

DTMRI have been shown to correspond well to histological measurements of fiber 

angles26–29. Acquiring DTMRI atrial fiber architecture, however, has proven extremely 

challenging. Difficulties arise from the fact that the atrial wall is significantly thinner than 

the ventricular wall, and from the high complexity of atrial fiber architecture, consisting of 

overlapping and interconnected bundles running throughout the chambers. Successful 

acquisition of atrial fiber architecture thus necessitates very high DTMRI image resolution 

and quality.

In this study, we present the first DTMRI acquisition of fiber architecture in the human atria. 

We have developed a customized 3D DTMRI sequence on a clinical scanner that makes it 

possible to image an entire intact human heart specimen ex vivo. We have optimized the 

MRI sequence so that the scan can be performed over a long period of time without 

deterioration in image stability. The method yields both high image signal-to-noise ratio 

(SNR) and resolution, which are essential for capturing details in atrial structure. Here, we 
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applied this new technique to reconstruct the 3D fiber orientation in eight human atria at a 

sub-millimeter resolution, providing an unprecedented level of information regarding both 

human atrial structure as well as its inter-subject variability. The information obtained in this 

study could lead to an enhanced understanding of atrial rhythm and pump disorders and thus 

improvements in their targeted treatment. The new DTMRI methodology is also expected to 

have broad utilization in acquiring the structure of other large specimens at sub-millimeter 

resolution.

Methods

Specimen acquisition and preparation

Human hearts (including the intact atria) were procured through the National Disease 

Research Interchange (NDRI, Philadelphia, PA). The hearts were from donors between the 

ages of 50 and 100 years (n=8, see Table 1 for donor characteristics). The tissue post mortem 

recovery interval was 12 hours. Diffusion imaging over a long time interval demands 

specimen preparation that ensures minimal artifact as well as sample stability during 

acquisition. In this study, the hearts were fixed in 10% buffered formaldehyde post recovery 

and were submerged in a buffer prior to imaging. In order to assure complete fixation of the 

whole heart, the specimens were scanned at least 40 days after the onset of the fixation in the 

formaldehyde. The atria were carefully filled and shaped, without damaging the tissue, to be 

close to the LV end-systolic state (maximum atrial filling) using compressed cotton 

absorbent. During acquisition, to obtain zero background signal from the heart chambers 

while avoiding specimen dehydration and susceptibility artifacts generated from the a tissue-

air interface, the hearts were submerged in a perfluorocarbon solution (3M, Maplewood, 

Minnesota). Test scans were performed to detect and eliminate any air bubble artifact inside 

the atria. The images from the beginning and the end of the experiment were compared to 

confirm the negligible change in the level of the tissue signal and in the specimen position 

over the long duration of scan (see Supplementary Methods).

Imaging

The primary challenge for this project was to create a pulse sequence with sufficient 

resolution and diffusion sensitivity to image detail within the atrial wall, while retaining the 

imaging stability over the MRI scan time which averaged approximately 50 hours per 

specimen. The large specimen size of the ex vivo heart required a clinical scanner (3T 

Achieva TX, Philips Healthcare, Best, Netherlands). The RF coil used in this study was 

Philips 8-Channel head coil. The balance between high gradient amplitudes, and optimized 

imaging bandwidth for artifact reduction was found through a series of iterative trials. The 

final sequence used was a 3D Fast Spin Echo: TE = 60ms, TR = 625 ms, BW = 289.8Hz/

pixel, number of echoes = 2, partial echo factor = 0.6, diffusion gradients duration = 22.9 

ms, time gap between diffusion pulses = 12.5 ms, max gradient strength = 60 mT/m, number 

of diffusion encoding directions = 15, maximum b-value = 800 s/mm2, FOV: 110×90×120 

mm3 (covering the whole heart), acquired voxel dimension: 0.5×0.5×1.0 mm3. The images 

were reconstructed with 0.4mm3 isotropic voxels by using zero padding. The measured SNR 

for the non-diffusion weighted images (b0) was ~120 (+/− 20). The 1.0 mm “slice” direction 

of the voxels was aligned with the longitudinal axis of the heart.
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To achieve high accuracy in the segmentation of the thin atrial wall, specimens were 

additionally imaged using a 3D T1-weighted gradient echo MRI at an isotropic resolution of 

0.25mm3 (TE=2.3ms, TR=12ms, scan duration: 1hr). These higher resolution images were 

used to guide the segmentation process.

Post processing

Raw MRI data were exported from the scanner and a customized image reconstruction was 

performed offline using MATLAB (The MathWorks Inc., Natick, MA) scripts. The 

reconstruction took advantage of the two spin-echoes to increase the SNR of the final 

diffusion images. From the 15 diffusion encoded images and the b0 image, diffusion tensors 

were calculated using DTI Studio30. The atrial myocardium was segmented semi-

automatically using manual thresholding and masking of the b0 image in combination with 

the T1 weighted image. Fractional Anisotropy (FA) is a scalar measure of diffusion 

anisotropy pattern in the tissue and ranges between 0 (fully isotropic diffusion) and 1 (fully 

anisotropic diffusion). Low and high cut-off thresholds were applied to the FA map 

(inclusion range: 0.01 – 0.45) to exclude the low-quality voxels (e.g. voxels with partial 

volume artifact, fat, tissue decomposition) that generate extreme FA values. These 

segmentation masks defined the boundaries for the measurement of fiber angles and other 

structural properties in the atrium.

Fiber angle measurement

A contribution of this work is the discovery of a reproducible coordinate system to express 

the relative fiber angles of the myocardial tracts on the roof of the LA. To do so, the origins 

of the 4 pulmonary veins were used as the reference points within the highly complex 

geometry of the atria. A “horizontal” vector was defined, connecting the median points of 

the left (inferior and superior) and right (inferior and superior) PVs, as shown in Figure 2. 

Once this coordinate system was established for each atrium, the principal eigenvectors were 

projected onto the local plane that is tangential to the atrial surface at the closest point. The 

fiber angles on the roof of the left atria were defined as the angle between the projected 

eigenvector and the projection of the horizontal vector onto the same tangential plane. In this 

coordinate system the fibers with an angle of 0° run left to right on the roof of the LA, and 

fibers extending in the anterior-posterior direction have fiber angle of 90°, as shown in the 

cartoon at the bottom right of Figure 2. For each heart, a ~2×2 cm patch was defined at the 

center of the atrial roof to measure the mean fiber angle on the roof (see schematic at bottom 

of Figure 2).

Maps of transmural fiber angle dispersions were created by calculating the angular 

deviations of local fiber angles inside a disk with diameter 4mm that goes through the entire 

atrial wall, regardless of wall thickness.

Tractography

For the purpose of visualization, fiber tracking was performed on the principal eigenvector 

using the Fiber Assignment by Continuous Tracking (FACT) algorithm30 (stopping criteria: 

FA = 0.065, angle deviation = 45 degrees) in DTI Studio. The resulting tracts are a 

macroscopic manifestation of fiber architecture and are locally aligned with the myofibers. 
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The fibers were rendered using Trackvis software31 (see Supplementary Methods for 

detailed visualization pipeline). The individual points on the fibers tracts were then color-

coded based on their absolute distance from the endocardial shell (red: epicardial, yellow: 

endocardial).

In order to group the fiber tracts into the new basis set of “bundles” that are common to all 

atria, semi-automatic clustering was performed based on the similarity in the orientation of 

the neighboring tracts. An initial k-means algorithm was applied to regroup the tracts into a 

number of clusters (n>50), each containing adjacent tracts with similar fiber orientations. 

These clusters were then manually selected in TrackVis, by placing seed points on the atria 

and finding the tracts that intersect them. Total of 15 “basis” bundles were selected using 

this technique, each with a distinct orientation and spatial extent.

Results

As described in the Methods, all images were acquired with voxel resolution of 

0.5×0.5×1.0mm3 and reconstructed to 0.4×0.4×0.4mm3. The average thickness of the atrial 

wall across the eight human atria was 2.73mm (5–95% quartiles: 0.98–4.38mm), which 

corresponds to 4.34 voxels (5–95% quartiles: 1.56–6.96 voxels). The mean Fractional 

Anisotropy (FA, see Methods) and Mean Diffusivity (MD) in the sampled atria were 0.18 

(25–75% quartiles: [0.12–0.22]) and 8.5×10−4 mm2/s (25–75% quartiles: [6.8–10.1]×10−4 

mm2/s) respectively. The corresponding values for FA and MD measured in LVs of the same 

hearts were 0.20 (25–75% quartiles: [0.15–0.23]) and 7.3×10−4 mm2/s (25–75% quartiles: 

[6.3–8.1]×10−4 mm2/s). Figure 1A,B presents data from two samples, illustrating the 

complexity of human atrial geometry. Figure 1A shows a short axis slice (b0 image, non-

diffusion weighted) with the superimposed segmentation of atrial tissues (left and right atria, 

and the inter-atrial bundle). In Figure 1B, atrial geometry is rendered by the grey volume of 

the lumen. All main features of atrial structure, including the pulmonary veins (PVs) and the 

trabeculated surfaces of left and right atrial appendages have been captured at this 

resolution.

The 3D spatial organization of myofiber architecture was visualized using fiber tractography 

(see Methods). Figure 1C–F presents renderings of the fiber architecture in the same human 

atrial specimen from different anatomical viewpoints. The color at each point on the tract 

represents the shortest local distance to the endocardial shell and is used to illustrate the 

depth of the fiber tracts across the atrial wall (yellow on the endocardium, red on the 

epicardium). Fiber tracts were found to have varying lengths and local densities (see 

Methods), and to be at different distances from the lumen. As the figure demonstrates, fibers 

traveling in different directions cross over or transition into each other throughout the atrial 

wall. The presented images illustrate the complexity of atrial fiber architecture in the three-

dimensional (3D) organ.

Fiber tractography results were obtained for all 8 human atrial specimens, as described in 

Methods. Figure 2 presents tractography for the roof of each left atrium (LA, posterior 

aspect). To assess inter-subject variability in fiber orientation in this region of the atria, fiber 

angles were measured using a coordinate system constructed from the 4 origins of the 
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pulmonary veins, as described in Methods (see schematic at bottom of Figure 2). Results 

(Table 1) reveal a dominant longitudinal orientation of fibers at the LA roof in 7 of the 8 

specimens; the average fiber angle for the 7 specimens (excluding Heart 3) was 99 degrees, 

with a very small standard deviation of 3 degrees. Heart 3 is uniquely different from the 

other samples. It contains a mixture of longitudinal and oblique fibers at the LA roof (mean 

angle of 168 degrees).

We next studied the fiber architecture across the depth of the atrial wall. Figure 3 

demonstrates the fibers at different transmural layers of human atria as viewed from 

posterior and anterior sides, using sub-endocardial and sub-epicardial cuts. Further 

characterization of regional changes in fiber orientation across the atrial wall in 8 specimens 

is presented in Figure 4. Fiber tractography in posterior and anterior views of specimen 4 

and 1 are shown in Figure 4A,C, respectively. In Figure 4A, top, two regions of interest 

(ROI), each of radius 4mm, are delineated; they are ~16mm apart. Histograms display the 

transmural distribution of fiber angles in each ROI (Figure 4A, middle row). The bimodal 

distribution of angles in ROI A (located closer to the left inferior PV) demonstrates the 

presence of two layers of distinct local fiber orientations across the wall -- the fiber layers 

run in perpendicular directions. This change in fiber angles in direction from epi- to 

endocardium takes place abruptly at the midwall (Figure 4A, bottom). ROI B shows a 

unimodal distribution of fiber angles that is mainly oriented along the medial axis of the 

posterior wall. Similar findings are presented in Figure 4C,D.

The pattern of fiber architecture with two distinct layers of different (nearly perpendicular) 

orientations across the wall was observed at several locations in the atria. To better assess 

fiber structure in the depth of the atrial wall, we quantified the transmural fiber dispersion 

throughout the atrial wall in each specimen by the angular deviation of the local fiber angles 

(see Methods). The angular deviation was color-coded and mapped onto the corresponding 

atrial lumen surface (Figure 4B,D). There was a dominant unimodal transmural fiber pattern 

at the LA roof of 4 of the atria (specimens 1,5,6 and 7). The remaining specimens were 

characterized with fiber patterns of higher transmural dispersion in orientation, particularly 

near the PVs. In all samples, the inferior and anterior sides of the left atria exhibited a high 

dispersion in transmural fiber angles, while the lateral wall of the left atria below the left 

PVs had consistently a unimodal transmural fiber distribution.

As demonstrated above, tractography results revealed the presence of fiber tracts with 

varying spatial extent and orientation throughout the atria. Our analysis demonstrated that 

groups of neighboring tracts running in the same direction tend to form major bundles that in 

some cases constitute distinct anatomical features of atrial muscular architecture. We used a 

semi-automatic algorithm to cluster distinct bundles from the full tractography data (see 

Methods). The results for specimen 7 are presented in Figure 5, demonstrating 15 distinct 

major bundles (labeled a-l). Importantly, presence of these major bundles was consistent 

across most of the specimens despite variation in cardiovascular clinical status of the 

subjects. For instance, two of the patients in this study had recorded history of atrial 

fibrillation (Hearts 6 and 7); our measurements showed larger left atrial blood volumes for 

these two patients in comparison to the rest of the population. Despite this, we did not find 

any conspicuous differences in the fiber architecture of these two specimens when compared 
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to the rest of the hearts; the general patterns of major fiber bundles (Figure 5) were observed 

in these two samples as well. The description of the major bundles follows below, presented 

in the context of their place within the overall 3D atrial architecture, and in relation to 

known atrial structures11,12.

The major fiber orientation on the posterior wall of the left atria was found to be posterior-

to-anterior (Figure 1C and Figure 5B - bundle c, recognized in the literature as 

Septopulmonary bundle32). On the left and the right, this bundle transitions toward the 

bundles that encircle the base of each PV (bundles a1 through a4). A group of fibers on the 

inferior-posterior and lateral side of left atrial wall (bundles b and d in Figure 5A,C) run 

circumferentially around the “waist” of the LA, crossing, on the posterior wall, over the 

Septopulmonary bundle (see also Figure 1E).

A pattern of overlapping fiber bundles was observed consistently on the anterior side of all 

the human atrial specimens (Figure 1D, Figure 5D,E)11. One dominant fiber bundle on this 

side was the inter-atrial band, which originates below the superior vena cava (SVC) in the 

right atrium (RA) and bridges the LA (known as Bachman Bundle33, Figure 5E bundle l). 
The extension of the Bachman Bundle on the left side of the LA splits into two bands that 

run around the LAA (Figure 4D bundle h and Figure 5E bundle b). The inferior part of the 

anterior wall in proximity to the mitral valve consists of oblique and circumferential bundles 

(Figure 5D,E). These bundles represent extensions of fiber tracts from the LA roof and 

lateral wall (Figure 5D bundles g and i, respectively). The superior side of the anterior wall 

contains another oblique bundle that originates from the base of the left superior pulmonary 

vein (LSPV) and runs toward the septum below the right superior pulmonary vein (RSPV, 

Figure 5E, bundle j). The extension of this bundle continues through the inferior septum 

(bundle k in Figure 5E,F).

The septal wall incorporates circumferentially-running fibers that extend from the posterior 

wall (Figure 5F, bundle e), as well as obliquely-running fibers originating between the right 

PVs (Figure 5F, bundle f). Depicted in Figure 5F, the Oval Fossa (OF) is a known distinct 

structural feature of the septal wall11. Fibers run circumferentially inferior to OF and extend 

to the posterior and anterior walls via the extension of bundles c and k, respectively (Figure 

5F). There is also a distinct group of fibers from the RA that run circumferentially around 

the OF center (Figure 5F).

The right atrial wall contains the specialized structures of the crista terminalis (CS) and 

pectinate muscles (PM)11. These structures manifest themselves in the tractography results 

as dense parallel bundles (Figure 1F and Figure 6B). As seen in Figure 1F, PMs run 

longitudinally throughout the wall and transition into CS bundles. The CS bundles are 

oriented in the inferior-to-superior vena cava direction and extend below SVC on the 

anterior side. The orientation of these fiber tracts generally follows the trabeculated structure 

of the endocardial wall (Figure 6).
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Discussion

In this study we reconstructed the 3D myofiber organization in human atria non-

destructively and at sub-millimeter resolution. To do so, we developed a high-resolution 

optimized 3D diffusion tensor MR technique on a clinical scanner (to accommodate the 

large specimens) and imaged the fiber architecture in eight human hearts ex vivo. The novel 

sequence and sample preparation allowed us to acquire the data over long scanning times 

with high image stability and high SNR. Using the technique, we were able to trace and 

characterize major bundles individually, and importantly, to present the relation between the 

various structures in the context of the overall 3D atrial fiber architecture. The sub-

millimeter resolution of the data provided information regarding local myofiber orientation 

across the atrial wall as well as the spatial heterogeneity of transmural fiber angle dispersion 

throughout the whole atria. The data presented in Figures 1 and 2 portray the first complete 

maps of atrial fibers in the entire atria. Furthermore, acquiring data on eight human atrial 

specimens allowed us to study the variability and similarity of the observed patterns across 

subjects.

The inter-subject analysis of the fiber architecture demonstrated that the main features of 

atrial anatomy are mostly preserved across subjects, although the exact location and the 

orientation of the bundles vary from heart to heart. The dominant feature on the roof of the 

atria is the longitudinal fibers that transition to a circular pattern encircling the four 

pulmonary veins (Figure 1C and Figure 2). These “vertical” bundles were clearly observed 

in 7 of the 8 hearts of the study. However, in one of the hearts a mixed pattern of oblique and 

horizontal fibers was present on the roof (Figure 2 – Heart 3). Nathan et al10 studied 

variability of superficial fibers at the junctions of the PVs in 16 postmortem hearts using 

dissection and visual tracing in the 1960s. They also observed the presence of mixed and 

oblique pattern of fibers in their population and reported that the most frequent fiber pattern 

on the roof was longitudinal, which is consistent with our findings. The systematic 

measurement of myocardial architecture properties such as fiber angles requires the 

definition of a coordinate system (or systems) in the atria that is reproducible across subjects 

with various atrial morphologies. This has been suggested previously for the ventricles34 but 

is particularly difficult for the atria due to their complex shape. Our findings show that in 7 

of the 8 specimens there exists a coordinate system in each LA that is based on the origins of 

the PVs, and in which major fiber bundles runs in the same orientation (within 3 degrees) on 

the roof and posterior wall. These findings suggest that this PV-based coordinate system (or 

a variation of it) could be an intrinsic choice for systematic measurements in the atrium.

The atrial wall has been previously suggested to have a bilayer structure, with fibers in the 

epicardial and endocardial layers running in nearly perpendicular directions. Evidence for 

this comes from either measurements undertaken at the tissue level6 or qualitative 

descriptions at the organ level12. The data obtained from DTMRI here enabled us to “see 

through” the atrial wall (Figure 3) and perform quantitative measurement and 

characterization of the local transmural fiber distribution throughout the atria. Bilaminar 

muscular architecture was indeed documented by DTMRI in the posterior-inferior and 

anterior regions; however, in the lateral wall and the roof of the LA the fiber angles were 
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essentially constant from endocardium to epicardium (Figure 4). This analysis demonstrated 

that the transmural fiber angle distribution in the atria is regionally heterogeneous.

The new knowledge obtained from this study can help interpret with greater accuracy 

experimental and clinical findings about the functioning of the atria and help better elucidate 

the link between electrophysiological and electromechanical activity, and the structural 

features in the normal and diseased atria. Of particular importance is the role of atrial 

structural organization and heterogeneous fiber orientation in rhythm disorders, as explored 

by a number of experimental and clinical studies 2,5,7,8,35,36. For instance, characterization 

of left atrial activation in human subjects has revealed that the change in fiber orientation 

and wall thickness at the boundary of the Septopulmonary bundles in the posterior could 

lead to conduction block during sinus rhythm propagation36. The same structural features 

have been shown to be substrate for atrial fibrillation initiation following rapid burst pacing 

at the PVs in normal sheep hearts7. In the right atrium, the branching sites of the CT and PM 

were found to cause frequency-dependent breakdown of wave propagation into fibrillatory 

conduction8. The results of our study could be employed to gain further insights into the 

structural contributions of atrial activity in health and disease. For instance, we can speculate 

that the spatial variation of transmural dispersion (Figure 4) could promote local conduction 

disturbances as the wave travels from a region with a more uniform transmural fiber 

orientation to a region with a bimodal distribution, particularly under conditions of 

decreased excitability. Such spatial heterogeneity in fiber orientation could also modulate the 

dynamics and localization of atrial rotors underlying human atrial fibrillation37,38.

Accurate human atrial fiber orientation data is essential for the construction of 

computational models of the whole human atria14,39,40, and the need for it has been 

acknowledged in numerous studies41–45. The DTMRI results presented here provide 

unprecedented detail about fiber architecture that can easily by incorporated in atrial models 

by co-registration and morphing methodologies25,46. The presented set of the major bundles 

(Figure 5) in combination with information about wall-thickness and transmural distribution 

of fiber orientation could form the basis for an accurate mathematical reconstruction of atrial 

fiber architecture (i.e. a rule-based approach, comprising of fiber orientation “rules” based 

on the present data) thus enabling atrial model construction from purely geometrical data 

(e.g. CT or MRI scans) of individual patient atria. The discovery of a common coordinate 

system and set of reproducible fiber bundles among specimens, as demonstrated here, could 

facilitate this approach. The integration of detailed structural data into computational models 

of whole human atria could further help identify the role of individual atrial structures in 

human arrhythmogenesis under various conditions. Furthermore, patient-specific atrial 

models are being constructed with the goal of identifying the optimal ablation targets for 

atrial flutter and fibrillation in an individualized way43. Incorporation of accurate fiber 

orientation will ensure improved accuracy in these clinical translation-bound modeling 

efforts.

The present study could have important implications for the design of methodologies for the 

acquisition of atrial fiber architectures in patients. Despite the increasing number of attempts 

at in vivo DTMRI for assessing myofiber structure in the left ventricle, diffusion imaging of 

a beating heart remains extremely challenging, with many co-founding factors, such as bulk 
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motion and myocardial strain, that can affect the measured signal47–49. The thin wall and the 

complex pattern of fibers in the atria present additional challenges to this task as compared 

to the ventricles. However, we can speculate that given a strong baseline knowledge of the 

fiber patterns in the human atrium, such as obtained in the present study, one could design a 

diffusion weighted sequence to detect those patterns in selected regions of the atria in vivo. 

This would require the rational design of imaging volumes and voxel orientations to include 

resolvable sections of the atria in each patient. The ex vivo data obtained in this study would 

inform the definition of those resolvable sections, and therefore, would facilitate a targeted 

imaging of the atrial fiber structure in patients.

Limitations

Despite the sub-millimeter resolution of our DTMRI imaging, with ~4.5 voxels across the 

atrial wall in most sections, those sections with thickness less than 0.5 mm could not be 

reliably imaged; these very thin areas were usually located in the extension of the veins and 

occasionally in portions of the right atrial wall. Furthermore, while we were able to 

characterize consistent fiber orientation patterns across the atrial specimens, the advanced 

age of the donors (55–94 years) and their history of cardiac disease may render our findings 

not entirely applicable to the atria structure of the general population. Finally, the number of 

subjects studied here is small and thus the findings may not reflect the true population 

diversity. The limited number of donor hearts also limited our ability to study the link 

between structural properties and disease state; however, we believe this study sets the 

groundwork for such investigations in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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WHAT IS KNOWN

• Accurate knowledge of myofiber architecture in the human atria is paramount 

to understanding the role of organ structure in atrial electrical activity in 

health and disease.

• Atrial fiber structure is complex and atrial anatomy varies greatly humans. 

However, there is a paucity of data regarding three-dimensional fiber 

orientation in the human atria and its inter-subject variability.
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WHAT THE STUDY ADDS

• The application of sub-millimeter DTMRI provides detailed reconstructions 

of fiber organization in intact human atria and allows for characterization of 

major fiber bundles as well as transmural fiber orientation.

• Despite variation in the exact location of the fiber bundles, a set of major fiber 

bundles were found to be consistent across most of the subjects.

• Transmural fiber patterns showed variation throughout the atria, 

demonstrating regional heterogeneity in the extent of fiber angle differences 

across the wall.
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Figure 1: 
Acquired geometry and fiber visualization results in human atria specimens. (Left panel) 

Atrial geometry: (A) Short-axis view of a non-diffusion weighted image (b0) with 

superimposed segmentation of left atrium (LA, red), right atrium (RA, blue) and inter-atrial 

bundles (green). Fat tissue surrounding the atria is excluded from the segmentation. (B) 

Anterior view of left and right atria created from T1-weighted images; the dark grey volume 

represents lumen. (Right panel): Fiber visualization using tractography. (C) Posterior view 

of atrial roof. (D) Anterior view. (E) Inferior and left lateral view. (F) View of right atrium. 

Color encodes the local distance to the endocardial shell: yellow is the endocardial layer, and 

red is the epicardial layer. (LIPV: Left inferior pulmonary vein, LSPV: Left superior 

pulmonary vein, RIPV: Right inferior pulmonary vein, RSPV: Right superior pulmonary 

vein, LAA: Left atrial appendage, RAA: Right atrial appendage, IVC: inferior vena cava, 

SVC: superior vena cava, MV: Mitral valve, TV: Tricuspid valve, BB: Bachman bundle)

Pashakhanloo et al. Page 16

Circ Arrhythm Electrophysiol. Author manuscript; available in PMC 2020 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Fiber tractography in eight hearts as viewed posteriorly over the roof of the LA. The lumen 

of each atrium is colored gray. Color-coding is as in Figure 1C–F. The schematic at the 

bottom right shows the “horizontal” direction defined by the four origins of the PVs, as 

described in Methods. Fiber angles on the roof of the posterior wall are measured with 

respect to that horizontal (marked LR in schematic). Average fiber angles at the roof were 

calculated in the region outlined by the dashed box.
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Figure 3: 
Fiber tractography of human atria (specimen 1) at different transmural layers as viewed from 

the Posterior (A) and Anterior (B) sides. The right column presents the original tracts. Left 

and middle columns represent the same results with sub-endocardial and sub-epicardial cuts, 

such that the outer layer fibers (at higher distances from the endocardium) have been 

removed from the visualization. The tracts have been visualized at a higher density (less 

culling down – see Supplementary Methods) in comparison to Figs 1 and 2. The color-

encoding is based on the distance from the endocardial shell.
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Figure 4: 
Regional changes in fiber orientation across the atrial wall. (A) (top) posterior view of the 

LA of specimen 4; (middle), a histogram of the transmural distribution of fiber angles from 

two ROIs; and (bottom), the transmural profile of fiber angles as a function of atrial wall 

depth in ROIs A and B. (B) Posterior lateral view of the maps of transmural angle dispersion 

for the eight specimens. (C) Same as (A) in sample 1. (D) Anterior view of the maps of 

transmural angle dispersion.
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Figure 5: 
The major fiber bundles in the human LA. (A-C) Posterior; (D,E) Anterior view, and (F) 

Septum. The individual bundles are denoted a-l in heart 7.
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Figure 6: 
Endocardial view of the right atrium of specimen 4. (A) 3D rendering of trabeculated 

structure reconstructed from non-diffusion weighted MR images and (B) the corresponding 

fiber tracts overlaid on top. The pectinate muscles and crista terminalis of the right atrium 

are manifested as dense tracts in tractography results. The orientation of these fiber tracts 

follows the trabeculated structure of the endocardial wall (A).
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Table 1:

Subject characteristics and measured fiber angles on the roof of the left atria for the post-mortem heart 

samples used in this study. The statistics were calculated based on the fiber angles measured within the patch 

shown in Figure 2. The “angle spread” is the root mean square deviation of the fiber angles.

Heart Name Age/Sex Cardiac disease status Angle mean (°) Angle spread (°)

Heart 1 93/F MI 97 27

Heart 2 67/F MI 98 26

Heart 3 90/F Normal 168 36

Heart 4 76/M MI 105 28

Heart 5 76/F Normal 95 27

Heart 6 94/F AF 100 19

Heart 7 86/M AF 99 12

Heart 8 55/M Normal 101 18

AF: Atrial Fibrillation, MI: Myocardial Infarction, M: Male, F: Female
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